Study on adaptive compressed sensing & reconstruction of quantized speech signals
نویسندگان
چکیده
منابع مشابه
Study on adaptive compressed sensing & reconstruction of quantized speech signals
Compressed sensing (CS) is a rising focus in recent years for its simultaneous sampling and compression of sparse signals. Speech signals can be considered approximately sparse or compressible in some domains for natural characteristics. Thus, it has great prospect to apply compressed sensing to speech signals. This paper is involved in three aspects. Firstly, the sparsity and sparsifying matri...
متن کاملAn Adaptive Compressed Sensing Method in Speech
The application of an adaptive compressive sensing method in the speech signal processing is proposed in this paper. First, the threshold of wavelet transform is used to preprocess the speech signal. Then, according to the parameters of the speech frame, each frame is adaptively assigned a measurement number. Finally, the measurement matrix is used to reconstruct the speech signal. Experimental...
متن کاملCompressed Sensing Adaptive Speech Characteristics Research
The sparsity of the speech signals is utilized in the DCT domain. According to the characteristics of the voice which may be separated into voiceless and voiced one, an adaptive measurement speech recovery method is proposed in this paper based on compressed sensing. First, the observed points are distributed based on the voicing energy ratio which the entire speech segment occupies. Then the s...
متن کاملSpeech Signal Compressed Sensing Based on K- Svd Adaptive Dictionary
This paper proposes a novel and successful method for speech signal compressed sensing based on KSingular Value Decomposition (K-SVD) algorithm. K-SVD is an iterative method that alternates between sparse representation of the train samples based on the current dictionary and a process of updating the dictionary atoms to better fit the speech data. The presented K-SVD algorithm is applied here ...
متن کاملSparse Reconstruction of Complex Signals in Compressed Sensing Terahertz Imaging
In reconstructing complex signals, many existing methods apply regularization on the magnitude only. We show that by adding control on the phase, the quality of the reconstruction can be improved. This is demonstrated in a compressed sensing terahertz imaging system. c © 2009 Optical Society of America OCIS codes: (110.3010) Image reconstruction techniques; (110.6795) Terahertz imaging; (110.17...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EURASIP Journal on Advances in Signal Processing
سال: 2012
ISSN: 1687-6180
DOI: 10.1186/1687-6180-2012-232